Matlab/Freemat/Octave/Scilab : Powers and Roots

The symbol ${ }^{\wedge}$ is used to indicate raising a number to the power of another number in Matlab/Freemat/Octave/Scilab:

operation	Mathematical symbol(s)	Matlab/Freemat/Octave symbol
power	5^{4}	$5^{\wedge} 4$

If we type the above in Matlab/Freemat/Octave/Scilab we obtain the following:
\square

Following the tutorial on Powers and Roots ${ }^{1}$, powers and roots can similarly be found in Matlab as follows.

Matlab has a particular function sqrt for finding the square root of a number. For example $\sqrt{9}=3$, and this is shown in Matlab:

```
--> sqrt(9)
ans =
3
```

Examples in Matlab of numbers with negative powers are given here:
--> 2^(-1)
ans =
0.5000
--> 5^(-3)
ans =
8.0000e-003
showing that $2^{-1}=\frac{1}{2}=0.5$ and $5^{-3}=\frac{1}{5^{3}}=\frac{1}{5 \times 5 \times 5}=\frac{1}{125}=0.008$.

[^0]Examples in Matlab of numbers with fractional powers are given here,

$-->9^{\wedge}(1 / 2)$
ans $=$
3
$-->8^{\wedge}(1 / 3)$
ans $=$
2
$-->16^{\wedge}(3 / 4)$
ans $=$
8
$-->4^{\wedge}(2.5)$
ans $=$
32

showing that $9^{\frac{1}{2}}=\sqrt{9}=3,8^{\frac{1}{3}}=\sqrt[3]{8}=2,16^{\frac{3}{4}}=(\sqrt[4]{16})^{3}=\sqrt[4]{16^{3}}=8,4^{2 \frac{1}{2}}=4^{2} \times 4^{\frac{1}{2}}=16 \times 2=$ 32.

Examples in Matlab of numbers with zero powers are given here,

$$
\begin{aligned}
& -->2^{\wedge} 0 \\
& \text { ans }= \\
& 1 \\
& -->0.1^{\wedge} 0 \\
& \text { ans }= \\
& 1 \\
& -->0^{\wedge} 0 \\
& \text { ans }= \\
& 1
\end{aligned}
$$

showing that $2^{0}=1,(0.1)^{0}=1$ and $0^{0}=1$.

[^0]: 1 Powers and Roots

