Matlab/Freemat/Octave/Scilab: Powers and Roots

The symbol ^ is used to indicate raising a number to the power of another number in Matlab/Freemat/Octave/Scilab:

operation	Mathematical symbol(s)	Matlab/Freemat/Octave symbol
power	5 ⁴	5^4

If we type the above in Matlab/Freemat/Octave/Scilab we obtain the following:

Following the tutorial on Powers and Roots¹, powers and roots can similarly be found in Matlab as follows.

Matlab has a particular function sqrt for finding the square root of a number. For example $\sqrt{9} = 3$, and this is shown in Matlab:

Examples in Matlab of numbers with negative powers are given here:

showing that
$$2^{-1}=\frac{1}{2}=0.5\,$$
 and $5^{-3}=\frac{1}{5^3}=\frac{1}{5\times 5\times 5}=\frac{1}{125}=0.008$.

¹ Powers and Roots

Examples in Matlab of numbers with fractional powers are given here,

showing that $9^{\frac{1}{2}} = \sqrt{9} = 3$, $8^{\frac{1}{3}} = \sqrt[3]{8} = 2$, $16^{\frac{3}{4}} = (\sqrt[4]{16})^3 = \sqrt[4]{16^3} = 8$, $4^{2^{\frac{1}{2}}} = 4^2 \times 4^{\frac{1}{2}} = 16 \times 2 = 32$.

Examples in Matlab of numbers with zero powers are given here,

showing that $2^0 = 1$, $(0.1)^0 = 1$ and $0^0 = 1$.